Monday, March 14, 2011

Gluten-Free January Survey Data, Part II: Health Effects of a Gluten-Free Diet

GFJ participants chose between three diet styles: a simple gluten-free diet; a "paleo light" diet diet that eliminated sugar and industrial seed (vegetable) oils in addition to gluten; and a "paleo full monty" diet that only included categories of food that would have been available to our pre-agricultural ancestors. The data in this post represent the simple gluten-free diet group, and do not represent the other two, which I'll analyze separately.

To get the data I'll be presenting below, first I excluded participants who stated on the survey that they did not adhere to the diet. Next, I excluded participants who were gluten-free before January, because they would presumably not have experienced a change from continuing to avoid gluten. That left us with 53 participants.

For each of these graphs, the vertical axis represents the number of participants in each category. They won't necessarily add up to 53, for several reasons. The most common reason is that for the questions asking about changes in health conditions, I didn't include responses from people who didn't have the condition in question at baseline because there was nothing to change.

Question #1: What is your overall opinion of the effect of gluten free January on you?

Participants had a very positive experience with the gluten-free diet. Not one person reported a negative overall experience.

Question #2: Did you note a weight change at the end of gluten free January?

And here are the data for people who described themselves as overweight at baseline:

Two-thirds of people who were overweight at baseline lost weight, and only one person out of 37 gained weight. That is striking. A number of people didn't weigh themselves, which is why the numbers only add up to 37.

Question #3: Before January 2011, did you have a problem with intestinal transit (frequent constipation or diarrhea)? If so, did your symptoms change during the month of January?


Responses are heavily weighted toward improvement, although there were a few instances where transit worsened. Transit problems are one of the most common manifestations of gluten sensitivity.

Question #4: Before January 2011, did you have frequent digestive discomfort (pain, bloating, etc.)? If so, did your symptoms change during the month of January?


Digestive discomfort was common, and the gluten-free diet improved it in nearly everyone who had it at baseline. I find this really impressive.

Question #5: Before January 2011, did you have acid reflux? If so, did your symptoms change during the month of January?

Acid reflux responded well to a gluten-free diet.

Question #6: Before January 2011, did you have a problem with tiredness/lethargy? If so, did your symptoms change during the month of January?
Lethargy was common and generally improved in people who avoided gluten. This doesn't surprise me at all. The recent controlled gluten study in irritable bowel syndrome patients found that lethargy was the most reliable consequence of eating gluten that they measured (1, 2). That has also been my personal experience.

Question #7: Before January 2011, did you have a problem with anxiety? If so, did your symptoms change during the month of January?

Anxiety tended to improve in most participants who started with it.

Question #8: Before January 2011, did you have a problem with an autoimmune or inflammatory condition? If so, did your symptoms change during the month of January?

Autoimmune and inflammatory conditions tended to improve in the gluten-free group, although one person experienced a worsening of symptoms.

Question #9: If you ate gluten again or did a gluten challenge after gluten free January, what was the effect?

Just under half of participants experienced moderate or significant negative symptoms when they re-introduced gluten at the end of the month. Two people felt better after re-introducing gluten.


Conclusion

I find these results striking. Participants overwhelmingly improved in every health category we measured. Although the data may have been somewhat biased due to the 53% response rate, it's indisputable that a large number of participants, probably the majority, benefited from avoiding gluten for a month. At some point, we're going to compile some of the comments people left in the survey, which were overwhelmingly positive. Here's a typical comment in response to the question " In your own words, how would you describe your January 2011 experience" (used with permission):
Amazing! I would recommend the experiment to anyone. I felt completely more alert, and less bloated. When I ate some gluten at the close of the experiment, I felt gross, bloated, and lethargic.
I think it's worth mentioning that some participants also eliminated other starches, particularly refined starches. Judging by the comments, the diet was probably lower in carbohydrate for a number of participants. We may try to assess that next year.

Thursday, March 10, 2011

Gluten-Free January Survey Data, Part I: Demographics and Limitations

Thanks to Matt Lentzner for organizing Gluten-Free January, and everyone who participated and completed the survey, we have a nice data set illustrating what happens when a group of people stop eating gluten for a month. Janine Jagger, Matt and I have been busy analyzing the data, and I'm ready to begin sharing our findings.

GFJ had over 500 participants, 527 of which received the survey and 279 of which completed the survey at the end of the month. Of those who received the survey, 53 percent completed it. I think these are respectable numbers for a survey of this nature, and it reflects the conscientious nature of the people who participated in GFJ.

Demographics

Although respondents were primarily from the United States, I'm happy to say that the data represent 18 different nationalities:

Respondents represented a diversity of ages, the largest group being 30-39 years old, with similar numbers in the 20-29 and 40-49 year groups.
Respondents were just under 2/3 women.

Respondents represented a variety of weights, but the sample was biased toward lean people, in comparison with the general population. There were not many obese participants.
Overall, I was pleased to see that the demographics were quite diverse, particularly in the age and gender categories.

Limitations

There are a few caveats to keep in mind when interpreting the survey results:
  1. GFJ participants do not represent a random cross-section of the population at large. They represent primarily health-conscious individuals who were motivated enough to make a substantial dietary change. In addition, many of the people who participated probably did so because they already suspected they had a problem with gluten.
  2. The survey response rate was 53%. Although I think that's a reasonable number considering the circumstances, it leaves open the possibility that survey responders differ from non-responders. It's conceivable that participants with better adherence and better outcomes were more likely to complete the survey than those who did not adhere to the diet or had neutral or unfavorable outcomes, despite our efforts to encourage everyone to complete the survey regardless of adherence or outcome. So the results could be biased toward positive outcomes, meaning that we will need to see a strong effect for it to be believable.
  3. This was a non-blinded diet trial without a control group. There's no way to know how much of the effect was due to avoiding gluten per se, how much was due to overall changes in diet patterns, and how much was a placebo effect.
With that in mind, what can we take from the survey data? I feel that we can use it to answer the following question: "what is likely to happen when a motivated, health-conscious person decides to avoid gluten for a month?" And I think we can also use it to generate (but not test) hypotheses about the effects of eating gluten on the general population.

Monday, March 7, 2011

Flu Season is Here

I've noticed everyone around me getting sick lately (I seem to have become mostly immune to colds and the flu in the last couple of years), so I took a look at Google Flu Trends. Lo and behold, the United States is currently near peak flu incidence for the 2010-2011 season. Here's a graph from Flu Trends. This year's trend is in dark blue:


Flu Trends also has data for individual US states and a number of other countries.

It's time to tighten up your diet and lifestyle if you want to avoid the flu this year. Personally, I feel that eating well, managing stress effectively, and taking 2,000 IU of vitamin D3 per day in winter have helped me avoid colds and the flu.

Thursday, March 3, 2011

Gluten-Free January Raffle Winners Selected!

Raffle winners have been selected and shirts are on their way. You know who you are. Thanks to everyone who participated and filled out the survey! For those who didn't, there's always next year.

Janine Jagger, Matt Lentzner and I are busy crunching the mountain of data we collected from the GFJ survey. We got 279 responses, which is remarkable for a survey of this nature.

Stay tuned for data!

Tuesday, March 1, 2011

Oltipraz

Oltipraz is a drug that was originally used to treat intestinal worms. It was later found to prevent a broad variety of cancers (1). This was attributed to its ability to upregulate cellular detoxification and repair mechanisms.

Researchers eventually discovered that oltipraz acts by activating Nrf2, the same transcription factor activated by ionizing radiation and polyphenols (2, 3, 4). Nrf2 activation mounts a broad cellular protective response that appears to reduce the risk of multiple health problems.

A recent paper in Diabetologia illustrates this (5). Investigators put mice on a long-term refined high-fat diet, with or without oltipraz. These carefully crafted diets are very unhealthy indeed, and when fed to rodents they rapidly induce fat gain and something that looks similar to human metabolic syndrome (insulin resistance, abdominal adiposity, blood lipid disturbances). Adding oltipraz to the diet prevented the fat gain, insulin resistance and inflammatory changes that occurred in the refined high-fat diet group.

The difference in fasting insulin was remarkable. The mice taking oltipraz had 1/7 the fasting insulin of the refined high-fat diet comparison group, and 1/3 the fasting insulin of the low-fat comparison group! Yet their glucose tolerance was normal, indicating that they were not low on insulin due to pancreatic damage. The low-fat diet they used in this study was also refined, which is why the two control groups (high-fat and low-fat) didn't diverge more in body fatness and other parameters. If they had used a group fed unrefined rodent chow as the comparator, the differences between groups would have been larger.

This shows that in addition to preventing cancer, Nrf2 activation can attenuate the metabolic damage caused by an unhealthy diet in rodents. Oltipraz illustrates the power of the cellular hormesis response. We can exploit this pathway naturally using polyphenols and other chemicals found in whole plant foods.

Thursday, February 24, 2011

Polyphenols, Hormesis and Disease: Part II

In the last post, I explained that the body treats polyphenols as potentially harmful foreign chemicals, or "xenobiotics". How can we reconcile this with the growing evidence that at least a subset of polyphenols have health benefits?

Clues from Ionizing Radiation

One of the more curious things that has been reported in the scientific literature is that although high-dose ionizing radiation (such as X-rays) is clearly harmful, leading to cancer, premature aging and other problems, under some conditions low-dose ionizing radiation can actually decrease cancer risk and increase resistance to other stressors (1, 2, 3, 4, 5). It does so by triggering a protective cellular response, increasing cellular defenses out of proportion to the minor threat posed by the radiation itself. The ability of mild stressors to increase stress resistance is called "hormesis." Exercise is a common example. I've written about this phenomenon in the past (6).

The Case of Resveratrol

Resveratrol is perhaps the most widely known polyphenol, available in supplement stores nationwide. It's seen a lot of hype, being hailed as a "calorie restriction mimetic" and the reason for the "French paradox."* But there is quite a large body of evidence suggesting that resveratrol functions in the same manner as low-dose ionizing radiation and other bioactive polyphenols: by acting as a mild toxin that triggers a hormetic response (7). Just as in the case of radiation, high doses of resveratrol are harmful rather than helpful. This has obvious implications for the supplementation of resveratrol and other polyphenols. A recent review article on polyphenols stated that while dietary polyphenols may be protective, "high-dose fortified foods or dietary supplements are of unproven efficacy and possibly harmful" (8).

The Cellular Response to Oxidants

Although it may not be obvious, radiation and polyphenols activate a cellular response that is similar in many ways. Both activate the transcription factor Nrf2, which activates genes that are involved in detoxification of chemicals and antioxidant defense**(9, 10, 11, 12). This is thought to be due to the fact that polyphenols, just like radiation, may temporarily increase the level of oxidative stress inside cells. Here's a quote from the polyphenol review article quoted above (13):
We have found that [polyphenols] are potentially far more than 'just antioxidants', but that they are probably insignificant players as 'conventional' antioxidants. They appear, under most circumstances, to be just the opposite, i.e. prooxidants, that nevertheless appear to contribute strongly to protection from oxidative stress by inducing cellular endogenous enzymic protective mechanisms. They appear to be able to regulate not only antioxidant gene transcription but also numerous aspects of intracellular signaling cascades involved in the regulation of cell growth, inflammation and many other processes.
It's worth noting that this is essentially the opposite of what you'll hear on the evening news, that polyphenols are direct antioxidants. The scientific cutting edge has largely discarded that hypothesis, but the mainstream has not yet caught on.

Nrf2 is one of the main pathways by which polyphenols increase stress resistance and antioxidant defenses, including the key cellular antioxidant glutathione (14). Nrf2 activity is correlated with longevity across species (15). Inducing Nrf2 activity via polyphenols or by other means substantially reduces the risk of common lifestyle disorders in animal models, including cardiovascular disease, diabetes and cancer (16, 17, 18), although Nrf2 isn't necessarily the only mechanism. The human evidence is broadly consistent with the studies in animals, although not as well developed.

One of the most interesting effects of hormesis is that exposure to one stressor can increase resistance to other stressors. For example, long-term consumption of high-polyphenol chocolate increases sunburn resistance in humans, implying that it induces a hormetic response in skin (19). Polyphenol-rich foods such as green tea reduce sunburn and skin cancer development in animals (20, 21).

Chris Masterjohn first introduced me to Nrf2 and the idea that polyphenols act through hormesis. Chris studies the effects of green tea on health, which seem to be mediated by polyphenols.

A Second Mechanism

There is a place in the body where polyphenols are concentrated enough to be direct antioxidants: in the digestive tract after consuming polyphenol-rich foods. Digestion is a chemically harsh process that readily oxidizes ingested substances such as polyunsaturated fats (22). Oxidized fat is neither healthy when it's formed in the deep fryer, nor when it's formed in the digestive tract (23, 24). Eating polyphenol-rich foods effectively prevents these fats from being oxidized during digestion (25). One consequence of this appears to be better absorption and assimilation of the exceptionally fragile omega-3 polyunsaturated fatty acids (26).

What does it all Mean?

I think that overall, the evidence suggests that polyphenol-rich foods are healthy in moderation, and eating them on a regular basis is generally a good idea. Certain other plant chemicals, such as suforaphane found in cruciferous vegetables, and allicin found in garlic, exhibit similar effects and may also act by hormesis (27). Some of the best-studied polyphenol-rich foods are tea (particularly green tea), blueberries, extra-virgin olive oil, red wine, citrus fruits, hibiscus tea, soy, dark chocolate, coffee, turmeric and other herbs and spices, and a number of traditional medicinal herbs. A good rule of thumb is to "eat the rainbow", choosing foods with a variety of colors.

Supplementing with polyphenols and other plant chemicals in amounts that would not be achievable by eating food is probably not a good idea.


* The "paradox" whereby the French eat a diet rich in saturated fat, yet have a low heart attack risk compared to other affluent Western nations.

** Genes containing an antioxidant response element (ARE) in the promoter region. ARE is also sometimes called the electrophile response element (EpRE).

Sunday, February 13, 2011

Polyphenols, Hormesis and Disease: Part I

What are Polyphenols?

Polyphenols are a diverse class of molecules containing multiple phenol rings. They are synthesized in large amounts by plants, certain fungi and a few animals, and serve many purposes, including defense against predators/infections, defense against sunlight damage and chemical oxidation, and coloration. The color of many fruits and vegetables, such as blueberries, eggplants, red potatoes and apples comes from polyphenols. Some familiar classes of polyphenols in the diet-health literature are flavonoids, isoflavonoids, anthocyanidins, and lignins.

The Case Against Polyphenols


Mainstream diet-health authorities seem pretty well convinced that dietary polyphenols are an important part of good health, due to their supposed antioxidant properties. In the past, I've been critical of the hypothesis. There are several reasons for it:
  1. Polyphenols are often, but not always, defensive compounds that interfere with digestive processes, which is why they often taste bitter and/or astringent. Plant-eating animals including humans have evolved defensive strategies against polyphenol-rich foods, such as polyphenol-binding proteins in saliva (1).
  2. Ingested polyphenols are poorly absorbed (2). The concentration in blood is low, and the concentration inside cells is probably considerably lower*. In contrast, essential antioxidant nutrients such as vitamins E and C are efficiently absorbed rather than excluded from the circulation.
  3. Polyphenols that manage to cross the gut barrier are rapidly degraded by the liver, just like a variety of other foreign molecules, again suggesting that the body doesn't want them hanging around (2).
  4. The most visible hypothesis of how polyphenols influence health is the idea that they are antioxidants, protecting against the ravages of reactive oxygen species. While many polyphenols are effective antioxidants at high concentrations in a test tube, I don't find it very plausible that the low and transient blood concentration of polyphenols achieved by eating polyphenol-rich foods makes a meaningful contribution to that person's overall antioxidant status, when compared to the relatively high concentrations of other antioxidants in blood (uric acid; vitamins C, E; ubiquinone) and particularly inside cells (SOD1/2, catalase, glutathione reductase, thioredoxin reductase, paraoxonase 1, etc.).
  5. There are a number of studies showing that the antioxidant capacity of the blood increases after eating polyphenol-rich foods. These are often confounded by the fact that fructose (in fruit and some vegetables) and caffeine (in tea and coffee) can increase the blood level of uric acid, the blood's main water-soluble antioxidant. Drinking sugar water has the same effect (2).
  6. Rodent studies showing that polyphenols improve health typically use massive doses that exceed what a person could consume eating food, and do not account for the possibility that the rodents may have been calorie restricted because their food tastes horrible.
The main point is that the body does not seem to "want" polyphenols in the circulation at any appreciable level, and therefore it gets rid of them pronto. Why? I think it's because the diversity and chemical structure of polyphenols makes them potentially bioactive-- they have a high probability of altering signaling pathways and enzyme activity, in the same manner as pharmaceutical drugs. It would not be a very smart evolutionary strategy to let plants (that often don't want you eating them) take the reins on your enzyme activity and signaling pathways. Also, at high enough concentrations polyphenols can be pro-oxidants, promoting excess production of free radicals, although the biological relevance of that may be questionable due to the concentrations required.

A Reappraisal

After reading more about polyphenols, and coming to understand that the prevailing hypothesis of why they work makes no sense, I decided that the whole thing is probably bunk: at best, specific polyphenols are protective in rodents at unnaturally high doses due to some drug-like effect. But-- I kept my finger on the pulse of the field just in case, and I began to notice that more sophisticated studies were emerging almost weekly that seemed to confirm that realistic amounts of certain polyphenol-rich foods (not just massive quantities of polyphenol extract) have protective effects against a variety of health problems. There are many such studies, and I won't attempt to review them comprehensively, but here are a few I've come across:
  • Dr. David Grassi and colleagues showed that polyphenol-rich chocolate lowers blood pressure, improves insulin sensitivity and lowers LDL cholesterol in hypertensive and insulin resistant volunteers when compared with white chocolate (3). Although dark chocolate is also probably richer in magnesium, copper and other nutrients than white chocolate, the study is still intriguing.
  • Dr. Christine Morand and colleagues showed that drinking orange juice every day lowers blood pressure and increases vascular reactivity in overweight volunteers, an effect that they were able to specifically attribute to the polyphenol hesperidin (4).
  • Dr. F. Natella and colleagues showed that red wine prevents the increase in oxidized blood lipids (fats) that occurs after consuming a meal high in oxidized and potentially oxidizable fats (5).
  • Several studies have shown that hibiscus tea lowers blood pressure in people with hypertension when consumed regularly (6, 7, 8). It also happens to be delicious.
  • Dr. Arpita Basu and colleagues showed that blueberries lower blood pressure and oxidized LDL in men and women with metabolic syndrome (9).
  • Animal studies have generally shown similar results. Dr. Xianli Wu and colleagues showed the blueberries potently inhibit atherosclerosis (hardening and thickening of the arteries that can lead to a heart attack) in a susceptible strain of mice (10). This effect was associated with a higher expression level of antioxidant enzymes in the vessel walls and other tissues.
Wait a minute... let's rewind. Eating blueberries caused mice to increase the expression level of their own antioxidant enzymes?? Why would that happen if blueberry polyphenols were themselves having a direct antioxidant effect? One would expect the opposite reaction if they were. What's going on here?

In the face of this accumulating evidence, I've had to reconsider my position on polyphenols. In the process, and through conversations with knowledgeable researchers in the polyphenol field, I encountered a different hypothesis that puts the puzzle pieces together nicely.


* Serum levels briefly enter the mid nM to low uM range, depending on the food (2). Compare that with the main serum antioxidants: ~200 uM for uric acid, ~100 uM for vitamin C, ~30 uM for vitamin E.